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Artificial Intelligence is revolutionizing wear and tear 

detection on industrial machinery. Applying new machine 

learning methods on large amounts of process and low-

cost sensor data to holistically assess the health of an 

industrial machine creates meaningful insights into future 

machine availability.

Over the last years, ei3 has developed “ConnectedAI”, a 

version of centralized federated learning[1] tailored to the 

needs of the manufacturing industry, to create predictive 

insights for machine health. When combined with 

“Symphony”, a smart, low-cost sensor capable of detecting 

and analyzing acceleration, vibration, and sound data 

emitted from industrial machines, ConnectedAI surpasses 

traditional vibration analysis while dramatically reducing 

cost and installation requirements.

This technical paper outlines the application scenarios 

for ConnectedAI, presents its technical foundation, and 

explains the physics of the wave field analysis used in the 

Symphony sensor.

[1]  Centralized Federated Learning

S. Abdulrahman, H. Tout, H. Ould-Slimane, A. Mourad, C. Talhi, and 

M. Guizani, “A Survey on Federated Learning: The Journey From 

Centralized to Distributed On-Site Learning and Beyond,” in IEEE 

Internet of Things Journal, vol. 8, no. 7, pp. 5476-5497, April 1, 2021, doi: 

10.1109/JIOT.2020.3030072.

Revolutionizing
Industrial Manufacturing
with ConnectedAI

E X E C U T I V E  S U M M A R Y

ConnectedAI is a version 

of centralized federated 

learning tailored to the 

unique needs of industrial 

machinery, making AI 

a cost-effective and 

practical solution to 

predict machine health.
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Over the last decade, manufacturers in many industries have adopted “Industry 4.0” 

or “IoT” tools as a key method for improving production efficiency. These tools use 

process parameters and sometimes additional sensor data to create standard metrics, 

such as “Overall Equipment Efficiency” (OEE), to allow operators to assess and track 

machine performance. ei3’s suite of IoT applications stands out as an early entrant 

into the market in 1999 and today as the leading provider in the plastics and converting 

industry. Machine owners, plant managers, and quality engineers widely use ei3’s 

no-code applications to track performance and reduce machine downtime, waste, and 

energy consumption - and subsequently lower production costs.

However, the pursuit of greater production efficiency is an ongoing battle as 

competitive pressures and new requirements for production sustainability continue 

to drive industry needs: Shifting into focus today is the need to judiciously use natural 

resources, the reduction of any environmental footprint, and also the lack of skilled 

labor in many geographies. 

Given the hype - and maybe fear - created by recent advances in AI (such as 

“ChatGPT”), it is not surprising that approaches based on AI are seen as the next big 

opportunity to achieve a “step change” in production performance. In this technical 

paper, we explore ei3’s unique approach to AI for industrial manufacturing, which 

differs from conventional approaches used for predicting machine performance and 

breakdowns, which are often based on a digital twin.

1.0   I   Introduction
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Figure 1: ei3’s suite of IoT applications has 

proven to be easy to install and quick to deliver 

returns: Many users report reductions in scrap 

rates, unplanned downtime, and energy.
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The notion of the digital twin is popular due to its apparent simplicity and 

accessibility. The machine designer or engineer formalizes the expected behavior of 

a machine using mathematical notation, creating its digital twin. Sensors measure 

the machine’s actual behavior, and any deviations of the measurements from those 

predicted by the digital twin are interpreted as signs of looming failure. Countless 

lab-bench experiments have been conducted and widely publicized to validate and 

popularize this approach.

2.0   I   Not all Digital Twins are Created Equal
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Figure 2: External factors 

impacting the quality of a 

digital twin. 

However, real machines are not lab experiments: The noisy and erratic nature of real-

world machines, compared to their lab-bench-bound cousins, makes this seemingly 

simple strategy remarkably hard to execute in reality. There are many factors external 

to the machine that have a dramatic impact on its performance. These are extremely 

hard to capture in a digital twin. Many digital twins therefore suffer from limited 

fidelity, rendering them unable to identify machine abnormalities.

Successful real-world examples of the digital twin approach are “health and usage 

monitoring” (HUMS) solutions, which are commonplace in sensitive applications 

like the high-powered gearboxes that connect the turbine engines of a helicopter to 

the rotor blades. The effectiveness of such systems comes from carefully developed 

mathematical models and precisely positioned sensors that are tuned to key 

frequencies that pose the highest risk to the gears. HUMS increase safety margins 

and supplement the stringent maintenance regime already commonplace in aviation, 

where any failure could lead to loss of life.
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However, the complexity of the required sensor systems and upfront 

engineering makes such solutions cost-prohibitive for all but the most 

(life-) critical industrial applications. It is worth noting that gearboxes are 

the most prominent example of HUMS applications in the literature, and 

that, with all due respect to the intricate detailed engineering involved, 

gearboxes are comparatively easy to describe mathematically.

Unlike gearboxes, most industrial production machines exhibit behaviors 

that are less deterministic. Like a powered double pendulum (a “chaos 

machine”), even the slightest deviation or mechanical imprecision can lead 

to seemingly chaotic behavior.

Adding to this complexity is the fact that machines are operated by humans 

who deviate from standard procedures, having both positive and negative 

effects on machine performance: While experienced operators can 

sometimes improve performance by applying human ingenuity, mistakes 

are more common and can lead to part failures and machine issues. This 

“human impact” is by no means limited to small operations that might 

suffer from skill shortages or lack operator oversight. Thomas Zurbuchen, 

recently retired Head of Science at NASA (considered by many the epitome 

of engineering excellence), reports that 70% of all failures at NASA are due 

to human error, versus 30% that are caused by technical failures, a ratio 

that he himself had expected to be the other way around.[1]

[1]  Zurbuchen: https://de.wikipedia.org/wiki/Thomas_Zurbuchen

Figure 3: Although industrial machines 

are controlled by process logic and 

governed by stringent engineering, 

small imperfects and changes in 

usage and environmental conditions 

add noise and chaos that make them 

hard to predict accurately. The chaos 

machine - a double pendulum, is a 

popular example to illustrate that even 

simple mechanical assemblies can 

exhibit chaotic behavior.
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As a result, mathematical models for larger and more complex assemblies - let alone 

entire machines! - are becoming increasingly challenging and unmanageable due to the 

multitude of internal and external factors that influence machine behavior, ranging from 

changes to machine settings or source material to environmental conditions such as 

temperature or humidity, to the operators applying the “human impact.

Therefore, while the idea of a digital twin for general industrial machinery is obvious and 

compelling, it quickly meets the harsh realities of a real-world deployment and requires large 

investments that make it impractical for many applications in the manufacturing environment.

 

Machine learning opens up alternative avenues. Professor Carl Henrik Ek, University of 

Cambridge’s Head of Machine Learning, illustrates the trade-off between “knowledge” 

and “data” using a simple graph, showing that complete knowledge (such as the elusive 

accurate “digital twin”) allows for solving any solvable problem, while on the other end of 

the spectrum, having access to all the data can also lead to a solution even if fundamental 

understanding is lacking or cannot be obtained.[1]

Professor Ek admits that combining both “knowledge” and “data” is required for most 

solutions, and that the quality of the solutions may vary. It, therefore, follows that the 

ability to collect and process large amounts of data can be used as a practical replacement 

for a complete and accurate digital twin. “ConnectedAI” is based on this premise.

[1]  Knowledge vs Data: “Free Lunch”? How we can Learn from Data with Carl Henrik Ek”, https://www.

youtube.com/watch?v=NLzUOnWnH1k
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Figure 4: Knowledge and Data are 

interchangeable in finding a solution 

to a problem, even though not all 

solutions are equal. Machine learning 

has the ability to ingest vast quantities 

of data, find patterns, and find data-

driven solutions, even when knowledge 

is not available.
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ei3’s ConnectedAI approach to industrial data science is a departure from the conventional 

digital twin approach and is unique in three areas:

3.0   I   Machine Learning and Federation: 
               ConnectedAI Approach

Enables efficient learning of rare 

events across fleet of machines 

without compromising data privacy. 

Detects and interprets subtle 

changes to the machine behavior 

based on full view of machine data.

Automatically generated on site to 

create a  high-fidelity fingerprint 

of the machine in operation.

By using a machine learning approach that is widely known in academia as “Federated Learning”, 

ConnectedAI creates results faster and more accurately, and ensures data privacy.

ConnectedAI is practical today because of the ubiquitous availability of cost-effective data 

collection and processing, which can be implemented in edge-devices embedded in each industrial 

machine. Together with secure  network connectivity this allows complex machine learning 

algorithms to operate on large amounts of data in a distributed manner. The three architectural 

pillars of ConnectedAI are introduced and explored in more detail in the following sections.
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3.1   I   Machine Learning vs. Signal Processing

As described earlier in this paper, HUMS systems can detect failures in gearboxes but 

require extensive engineering and high-cost sensors to pick up tiny signals. This is because 

capturing the vibrations created by a failing gear directly is nearly impossible. In this section 

a typical industrial gear box, such as one used in an extrusion machine, is assumed to suffer 

from an imbalance defect from wear and tear.

As a first approximation, the force created by a rotating off-center mass (a “rotating imbalance”), 

such as a gear that has experience wear-and-tear, can be calculated as the product of the rotating 

mass, its eccentricity, and the square of its rotational speed:

   

A typical gear may have a diameter of 50mm (r = 0.025m); assuming a mass imbalance of 1 gram 

(a high conservative number which would indicate an advanced stage of metallic ablation and a 

rotational rate of 500 RPM, the force created through the angular momentum is  

   

6.25 N acting upon a 100 kg mechanical assembly (a low conservative estimate for the mass of 

the gearbox) results in an acceleration to be measured by the sensor of 

Since no mechanical assembly is entirely free of vibrations, picking up this signal requires a 

sensor with suitable differential sensitivity. Few sensors on the market are capable of this type of 

sensitivity; those that are must be carefully located on the assembly to be effective and require 

specialized signal processing to remove noise. All of this adds cost and complexity.  

Figure 5: A gearbox failure is modeled 

as an imbalanced mass, creating a 

rotational force and acceleration on 

the gearbox assembly.
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Turning to machine learning allows the substitution of expensive signals with large amounts 

of data. ConnectedAI uses machine learning and pattern matching based on a multitude of 

sensors and observations, to assess the overall health of a process or machine. Instead of 

using a few expensive, high quality signals, ConnectedAI uses a much larger set of data to 

indirectly detect tiny signals and events, and tolerate larger error margins inherent in those 

lower cost signals.  

ei3 has created a data sensing and processing device called “Symphony” to monitor the 

health of mechanical assemblies, such as rotational equipment, robots, or linear motion 

drives. Symphony is a wave field sensor, which uses multiple MEMS-based sensors to record 

a machine’s wave field ranging from low-level accelerations starting from about 0.2 Hz, 

through “traditional” vibration from 2-20 Hz, sound from 20-20’000 Hz, to waves beyond 

sound up to about 40 kHz. The assessment of the wave-field information is accomplished 

within the Symphony device itself and can use the entire frequency spectrum.

Using the full spectrum enables the Symphony to detect changes to a dynamic system 

(such as a running machine). In the case of the gearbox, ei3’s wave field analysis leverages 

the amplifying forces of resonance: While the vibration created by the failing gear is 

undetectable, its effects on the overall system are. By exhaustively and carefully recording, 

and analyzing, a wide spectrum of frequencies that capture the full behavior of the dynamic 

system, the signal becomes detectable through the resonance effects of its surrounding 

mechanical assembly.

Figure 6: The Symphony device 

uses several sensors to record the 

wave field emitted from a machine. 

Careful analysis over time reveals 

subtle behavior changes that 

occur as a result of wear and tear.
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Resonance effects in a mechanical assembly can lead to failures, sometimes catastrophic 

ones: The most well known example is probably the spectacular collapse of the Tacoma 

Narrows bridge in 1940, which occurred as a result of aeroelastic flutter caused by wind 

currents. The wind was only moderate and by itself caused no damage; mechanical resonance 

caused the collapse. Likewise, the wear and tear on rotating mechanical assemblies is often 

less detrimental than the consequences of the resonance that it creates. 

It is important to note that this approach will not detect events that do not create 

resonances, such as mechanically well-dampened or isolated imbalances. By definition 

these imbalances have no impact on the overall machine and therefore their invisibility to the 

analysis may in fact be desirable. 

Because of the unpredictable and chaotic nature of the resonance patterns created, the 

Symphony device can not use a-priori knowledge to detect an event. Even though the key 

frequency of the failing part can be calculated, it is unpredictable where the resonance 

effects will appear in the overall spectrum. Therefore, the Symphony device relies on 

machine learning to search and identify frequency patterns that indicate system changes.  

The approach used by ConnectedAI is to use machine learning to create a Digital 

Twin by continuous observation, and use this twin as a baseline to detect changes to 

machine’s behavior.
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ConnectedAI creates a Digital Twin of the machine behavior based on observations, 

instead of pre-determined mathematical models. This is achieved through the 

collection of sensor readings and process variables, which can be continuously 

collected easily and at a low cost, and their local analysis. 

This data collection - the variables concerned and the read-frequency -  is adapted to  

the nature of the machine and the process. Process variables are directly retrieved from 

the machine’s control logic. Additional data may be collected from sensors that are 

placed on the machine, where necessary. The Symphony device is an example of such a 

sensor. Although the data collection is continuous, each collected data set represents 

discrete samples of the machine state at the particular time, creating a time-series. 

Based on this time-series, the creation of the ei3 Digital Twin model is a two phase 

process that converts the collected data into “fingerprints” and “events”.

In a first step, the time-series is processed through standard transforms to enrich the 

data. These transforms include the computation of classical statistical information for 

SPC (statistical process controls such as mean, average, standard deviation), a Fourier 

transform to assess the data’s inherent frequency components, and a first derivative to 

track the rate of change. The resulting data is retained as the machine “fingerprint”.

3.2   I   Creating Digital Twins by Observation: 

       The ei3 Digital Twin

Figure 7: ei3 creates Digital 

Twins by observing the 

machine in operation, 

removing the need to create 

mathematical a-priori models.

Figure 8: Machine fingerprints 

and machine events are 

created by analysis of recorded 

machine data.
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An example of events detected by the system are 

shown in the Figure 9. Multiple data sets of a single 

variable over time are superimposed to show the 

repetitive nature of a mechanical processing step. 

Drift is visible, as is typical given the non-perfect 

nature of real world machines; however an 

outlier is clearly in the center of the graph, 

highlighting a potential process failure. 

In Figure 10, two frequency spectra show 

significant differences as several new frequency 

components emerge between the data sets. The 

graphs show the amplitude of a frequency as a 

color, with dark blue showing low amplitudes, 

green and yellow progressively higher 

amplitudes, against the frequency on the Y-Axis. 

Time is running along the X-Axis.

Changes to the model can be assessed to indicate 

an impending failure, gradual wear, or the result of 

a change to the machine’s operating regime. This 

allows the model to be fluid and adapt to operational 

changes, ensuring optimal performance. 

Figure 10: A process failure is detected by 

observing changes to the frequency spectrum 

of a time series

Figure 9: A process failure is detected by 

observing a time series variable of a repeating 

mechanical process.

In a second step the fingerprint is fed into a pattern detection algorithm that looks for changes 

to the fingerprints over time. These may include significant changes to SPC parameters which 

would flag variable outliers, emergent new frequency components within the FFT spectrum, or 

accelerating change to a variable sequence. Such occurrences are reported as events.
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Given the relative rareness of failure events and the slow progression of mechanical 

wear, the sharing of the insights of the individual machines across the fleet of 

machines is essential for the Digital Twin to emerge quickly enough to be useful. 

ConnectedAI therefore shares data about events: observing events as described 

above is not done in the isolation of each individual machine, but in coordination 

across the owner’s or manufacturer’s fleet of machines. This ensures that events seen 

at one machine can be taken into account in the data analysis of other machines, and 

helps accelerate the detection of failure patterns.

This “Federated Learning” approach[1] allows many machines to contribute to a shared 

and common Digital Twin of a machine by sharing events without necessitating the 

sharing of the underlying data.  

2 An excellent overview of federated learning approaches can be found in Federated learning: 

Beutel, Daniel J., Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-Marques, Yan Gao, 

Lorenzo Sani et al. “Flower: A friendly federated learning research framework.” arXiv preprint 

arXiv:2007.14390 (2020).

3.3   I   Connected Assessment vs. Analytics in Isolation

LOCAL FEDERATED 
LEARNING

Model
CENTRALIZED FEDERATED 

LEARNING

Unified
Model

Model

Model
Figure 11: Federated learning allows learning to occur on local data. 

Sharing is coordinated between all participating machines, allowing 

each machine to benefit from the events detected by its siblings.
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This approach is in contrast to both a centralized 

and a completely isolated approach of learning. 

The centralized approach requires all events to be 

collected at a central location for in-depth analysis. 

This is the most common approach used today, 

however runs afoul of the privacy needs and data 

sharing policies of many machine owners and users. 

On the other hand, the isolated approach is unsuitable 

because each individual machine typically does not 

experience enough events to provide efficient learning 

in useful time, and has the fatal flaw that a failure 

event must first be seen by a machine before it can be 

anticipated in the future.

Using the “centralized 
federated learning 
approach, ei3 provides 
a global twin that 
encapsulated collective 
knowledge and ensures 
data privacy.

ei3’s ConnectedAI uses “centralized federated learning”, where the ei3 data center acts as a 

central instance that coordinates learning sessions across multiple machines. Each individual 

machine inspects local events and event data to train a local Digital Twin. These local twins are 

then collected by the central coordinating instance in parametric form to construct, and share, a 

unified global twin, incorporating the insights and learnings from all machines. This global twin 

thus encapsulates the common, collective knowledge without sharing the events themselves, 

thus ensuring data privacy. 

The common collective twin represents the learning and insights that are common to all 

machines across the fleet. Local deviations continue to reside in the Digital Twins at each 

machine. These local deviations may be due to different operating regimes and modes, or 

environmental conditions.

Using this approach, ei3 can provide fast and efficient predictions for even rare failure modes, 

and create insights that are both meaningful to individual machine owners, fleet owners, and 

machine builders: Events that are unique to individual machines most likely indicate part failures 

on those machines; events that are unique to the fleet of machines of an operator point to issues 

relating to this operator's SOPs, choice of materials, machine settings, or supply chain. Finally, 

events that are common across the entire fleet of machines will be of primary interest to the 

machine builder as they may indicate machine design issues.



16

4.0   I   ConnectedAI in Action:
          Detecting Mechanical Issues in 
   Large Scale Laminators

One of the first deployments of a predictive solution based on the principles of 

ConnectedAI has been put into operation with an operator of continuous web 

laminators. This particular operator creates plastic films for medical applications. A 

laminator is used to deposit chemicals on top of plastic substrate. The precise layer 

thickness of each deposition is critical and must be maintained exactly for the final 

product to be usable. 

The lamination machine is a large 

and complex system, where the 

plastic moves along a convoluted 

pathway, guided by rollers, from 

an unwind spool, through multiple 

processing stations, to a rewind 

spool. In this application, even 

slight vibrations create ripples in 

the material and the deposited layers, resulting in defects and an unusable product. 

Failing bearings in the rollers are a key source of vibration, and are the primary target 

of the data analysis. 

A set of ei3 Symphony devices, mounted at different places on the main frame of 

the laminator are used to capture the wave fields emanating from the laminator. The 

captured spectrum of data includes the vibrations and other important signals related 

to the health of roller bearings, spools, and motor operations, such as the higher 

frequency signals created by metal ablation effects that indicate early bearing wear – 

often audible as a high pitched “whine” to experienced service engineers. 

The massive amount of data created by the Symphony sensors is impractical to 

aggregate it in a central database. The “Federated Learning” approach of ConnectedAI 

allows the Symphony sensors to collaborate and create a common behavioral model 

of the machine while it is in operation, utilizing shared insights on the datasets in lieu 

of a central data collection. (As the laminator belongs to a single operator, in this case 

there would not be any data privacy concerns related to sharing this data.)

Unwind spool

Rewind Spool

Processing Stations

Rollers
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During operation, the speed of the laminator, measured in RPMs (revolutions per minute) of its 

rollers, changes from time to time. In addition, the diameter of the unwind and rewind spools 

vary as the material travels through the machine from the unwind spool to the rewind spool. 

This background could present a formidable challenge to any conventional application of 

signal processing, looking for the vibration effect of a failing bearing.

As an example, consider the amplitude level for two different machine states in Figure 13. The 

blue and the orange line each are distinct recordings of amplitude levels on the Y-axis of the 

same, randomly selected frequency, against the RPM range of the machine on the X-axis. As 

to be expected, the amplitudes rise exponentially with machine speed, however resonance 

effects across the complex mechanical assembly add significant deviations, creating different 

number of peaks to occur at different speeds for different operating modes: slight changes in 

the machine’s process state - such as different diameters of the unwind and rewind spools as 

the material is being processed by the machine, lead to different resonance behaviors.

ConnectedAI creates Digital Twin models based on the fingerprint of the wave field data, as 

the machine progresses through its operating states. These states are characterized by key 

machine operating parameters, such as machine RPM, spool diameters, and state information 

of deposition heads. Although the space described by these machine parameters in principle 

is infinite, data quantization effects lead the algorithm to identify approximately 100 distinct 

states, and for each a characteristic wave field data set is recorded.

Each new wave field data set is compared against the existing library of previously recorded 

fingerprints. A distance function between the new data set and the historic data determines 

if the new data set can be deemed “normal” or if an abnormality is indicated, in which case an 

alert is raised.

Figure 13: Amplitude response of a 

critical frequency over the speed-

range of the machine, for two different 

operating modes.
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The effect of this process becomes apparent in the graph below, where all recorded wave fields are 

shown, each as a single dot representing a complete frequency spectrum. To simplify the visualization, 

the Y-position is based on the weighted average amplitude of the spectrum, causing similar spectra  to 

appear at a similar position along the Y-axis. 

On the left hand side of the graph all recorded wave fields are shown with the X-axis representing the 

time of the recording. Periods of machine inactivity are visible as gaps in the graphs. The data was 

collected over a one month period, during which one failure event occurred, indicated by the blue star. 

On the left side of the graph, the failure event is not reliably distinguishable from normal operations. 

On the right side of the graph, the same wave field data is sorted into the approximately 100 operating 

states identified within the Digital Twin model created by ConnectedAI. The failure event is again 

identified as the blue star, this time clearly identifiable as an outlier within its respective operating 

state or “column” of relevant historic fingerprints. The outliers are identified based on statistical 

analysis within each fingerprint, based on average and standard deviation. The event identified by the 

blue star is the only recorded event outside the 2x standard deviation band around the mean within its 

respective fingerprint group.

Symphony

Symphony

PLC

BEARING HEALTH
ANALYSIS

Health 
Status 

+
Alerts
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After many years of trying, recent advances have allowed AI-based 

chat-bots to surprise the popular mainstream with human-like prose, 

if not always factually correct content. Applying similar technology to 

industrial applications with their stringent correctness requirements, 

limitations imposed by data privacy, and the relative scarcity of data 

continues to present a formidable challenge. 

ei3’s ConnectedAI is addressing this challenge by applying a centrally 

orchestrated, federated learning approach to model the behavior of 

industrial machines without a-priori knowledge. This enables learning 

based on limited and disjoint data sets, without the need to share 

data, and can accommodate large amounts of operational variation 

between machines in different operating environments.

With its unwavering commitment to innovation and excellence, ei3 is 

poised to remain at the forefront of developing practical ConnectedAI 

solutions that delivers positive outcomes for the owners and builders 

of industrial machines.

5.0   I   A Look at What’s Next

ConnectedAI enables 

learning based on limited and 

disjoint data sets, without 

the need to share data. It can 

accommodate large amounts 

of operational variation 

between machines in different 

operating environments.
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